Let B = {x₁,..., x_n} be a finite, ordered basis of a vector space V. Any vector v ∈ V can be written uniquely as

$$\alpha_1 \mathbf{x}_1 + \cdots + \alpha_n \mathbf{x}_n.$$

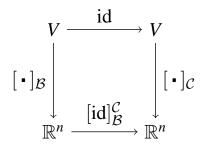
The vector $[\mathbf{v}]_{\mathcal{B}} = \langle \alpha_1, \dots, \alpha_n \rangle \in \mathbb{R}^n$ is called the **coordinate** representation of **v** with respect to the ordered basis \mathcal{B} .

If V is an n-dimensional vector space and B is any ordered basis of V, then coordinate representation gives an isomorphism from V to ℝⁿ.

Transition Matrices

Let *V* be a finite dimensional vector space. Let $\mathcal{B} = {\mathbf{x}_1, ..., \mathbf{x}_n}$ and $\mathcal{C} = {\mathbf{y}_1, ..., \mathbf{y}_n}$ be bases of *V*. Let id : $V \to V$ be the identity function.

- The **transition matrix** matrix $[id]_{\mathcal{B}}^{\mathcal{C}}$ is the $n \times n$ matrix whose j^{th} column is the vector $[\mathbf{x}_i]_{\mathcal{C}}$.
- Theorem 4.26.1: For all $\mathbf{x} \in V$, we have $[\mathrm{id}]_{\mathcal{B}}^{\mathcal{C}}[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$.



• **Theorem 4.26.2:** The matrix $[id]_{\mathcal{B}}^{\mathcal{C}}$ is invertible, and $([id]_{\mathcal{B}}^{\mathcal{C}})^{-1} = [id]_{\mathcal{C}}^{\mathcal{B}}$.

Matrix Representations of Linear Transformations

Let *V* and *W* be finite dimensional vector spaces.

Let $\mathcal{B} = {\mathbf{x}_1, \ldots, \mathbf{x}_n}$ be an ordered basis of *V*, and let

 $C = {\mathbf{y}_1, \ldots, \mathbf{y}_m}$ be an ordered basis of *W*.

Let $f: V \to W$ be a linear transformation.

- We define $[f]_{\mathcal{B}}^{\mathcal{C}}$ to be the matrix whose columns are $[f(\mathbf{x}_1)]_{\mathcal{C}}$, $[f(\mathbf{x}_2)]_{\mathcal{C}}, \ldots [f(\mathbf{x}_n)]_{\mathcal{C}}$.
- **Theorem 4.33:** With the above notation, for all $\mathbf{x} \in V$, we have

Transition Matrices

Theorem 4.35: Let *V* be a finite dimensional vector space, with ordered bases \mathcal{B} and \mathcal{C} . Let $f : V \to V$ be a linear transformation, and let $P = [\operatorname{id}]_{\mathcal{C}}^{\mathcal{B}}$. Then